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In the present investigation an attempt has been made to solve the two-dimensional incompressible viscous
flow past an impulsively started circular cylinder for Reynolds numbers ranging from 20 to 5000 using
higher-order semicompact scheme �HOSC�. Unlike conventional higher-order compact schemes the HOSC
scheme has been developed to handle the circular geometry of the chosen problem and the intensive algebraic
manipulations have been reduced considerably by relaxing the compactness of the computational stencil for
few terms �but retained for most of the terms� of the discretized equations. For the flow past an impulsively
started circular cylinder the results obtained at low and moderate Reynolds numbers have been validated with
the experimental and numerical observations available in the literature. For high Reynolds number flows, the
present scheme rightly captures the � phenomenon at Re=1000 and both � and � phenomena one after the
other at Re=5000.
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I. INTRODUCTION

The classical problem of viscous incompressible flow past
an impulsively started circular cylinder, which is being used
as a prototype of unsteady separated flows has been the sub-
ject of many experimental, theoretical, and computational
investigations for the past several decades. Although the ge-
ometry is simple, the flow phenomenon is complex espe-
cially for large Reynolds numbers. Therefore, obtaining so-
lutions to the governing Navier-Stokes equations is very
challenging and has generated considerable interest to find
the analytical solutions �1–8�. In these investigations the
flow for times after the start is considered using the boundary
layer theory. The basis of these applications of unsteady
boundary layer theory is to expand the flow variables in
powers of the time from the start of the position and they are
necessarily limited to small times after the start. However,
the results fortunately indicated the basic structure of the
initial position. There are also many experimental investiga-
tions on unsteady flow past an impulsively started circular
cylinder �9–12�. Among them �12� is the latest and the de-
velopment of the main and secondary vortices has been stud-
ied qualitatively and quantitatively in detail for Reynolds
numbers up to 104. Indeed it is in this study that the presence
of secondary eddy phenomenon which has a rotation oppo-
site to that of the main eddy due to second separation of the
flow was reported experimentally. On the other hand, there is
another category of purely numerical schemes to solve
Navier-Stokes equations initiated by �13� for Re=40 and 100
�here Re=Ud /� where d is the diameter of the cylinder, U is
the characteristic velocity, and � is the coefficient of kine-
matic viscosity�. The same problem has also been considered
by �14–19� for Reynolds numbers ranging from 10 to 500.
The major interest in these investigations is the development
of the unsteady separated wake behind the cylinder as a func-
tion of time and its structure for large values of the time.

Based on the existing results, the flow patterns can be di-
vided into three categories depending on the value of the
Reynolds number. The flows with Reynolds number less or
equal to 60 comes in the first category wherein the unsteady
flow computations can be made until steady state. The flow
in this range of Reynolds number remains symmetric with
respect to the x axis. Therefore, the half domain with positive
y is sufficient for obtaining the numerical solutions. The sec-
ond category ranges the Reynolds number from 60 to 800
wherein the flow is symmetric for small time steps. Refer-
ence �12� observed formation of bulge and secondary eddy
phenomena at time 2.5 in this range of Re and demonstrated
the same at Reynolds numbers 300 and 550, respectively.
Due to the onset of the asymmetry at large times, computa-
tions in this range of Reynolds number have to be carried out
around the full circle. However, if the aim is to understand
the flow phenomena at the beginning of the translation, then
the computations can still be carried out on one half of the
domain. The third category can be taken for high Reynolds
numbers where the interest is focussed close to the cylinder
and early time steps. At these Reynolds numbers, �12�
showed the development of two interesting flow phenomena
called phenomenon � for Re greater than 800 and phenom-
enon � for Re 5000 and above. To establish numerically
these complex flow phenomena for flow past an impulsively
started circular cylinder, the investigators until now have
used Re=3000 to demonstrate � phenomenon and Re
=9500 for � phenomenon. Though it is known experimen-
tally that both these phenomena must occur one after the
other at Re=5000, so far there has not been any evidence of
such numerical simulation having been reported.

For the past few years, application of higher-order com-
pact �HOC� schemes to viscous incompressible flow calcula-
tions has been attracting many researchers due to their higher
degree of accuracy and smaller stencil. References �20–23�
are some of the early investigators who have developed
fourth-order schemes to stream function-vorticity equations
on compact molecules. All these investigations are centered
on steady flows and the developed schemes have been tested
for lid driven cavity problem in square domains. Reference*Electronic address: sryedida@iitm.ac.in
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�24� has developed and applied several higher-order schemes
for time dependent diffusion and convection-diffusion prob-
lems and �25� used the HOC approach in the transient Euler
equations in one- and two-dimensional problems. Reference
�26� also proposed a scheme for time dependent problems
similar to the scheme proposed by them for the steady case.
These investigations show that there is some attempt to real-
ize the solutions of time dependent diffusion and convection-
diffusion problems using HOC schemes. Reference �27� de-
veloped an essentially compact scheme by simplifying the
algebraic manipulations involved for the Navier-Stokes
equations in stream function vorticity formulation. Reference
�28� developed a higher-order semicompact �HOSC� scheme
in the lines of essentially compact scheme to the unsteady
flows in curved geometries. In the HOSC scheme the alge-
braic manipulations have been simplified by sacrificing com-
pactness of the numerical scheme for certain terms of the
governing equations. The main advantage of the semicom-
pact scheme is that at any time level there are only two
elliptic types of equations to be solved, one each for stream
function and vorticity along with a parabolic equation for
time marching.

The purpose of the present investigation is to test the
HOSC scheme to solve a problem with complex flow phe-
nomenon in nonrectangular geometry. To the best of our
knowledge no work has been reported until now applying the
compact schemes to flow problems in nonrectangular do-
mains except �29–31�, who developed compact fourth-order
schemes to linear Poisson or quasilinear Poisson equations in
polar coordinates. However these investigations are limited
to the Poisson-type equations. If the domain of interest is
nonrectangular, the finite difference methodology of higher-
order compact schemes further complicates the already very
complicated algebraic manipulations. Therefore, in the
present work we have used the higher-order semicompact
scheme to solve flow past an impulsively started circular
cylinder in curvilinear coordinate system. The curvilinear

system is generated by solving elliptic partial differential
equations of a body fitted coordinate system proposed by
�32�.

II. MATHEMATICAL FORMULATION

A. Governing equations

Consider the two-dimensional unsteady incompressible
Navier-Stokes equations in stream function vorticity form in
Cartesian coordinates
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where � is the stream function defined by u=�� /�y, v
=−�� /�x and � is the vorticity defined by �=vx−uy, and u
and v are components of the velocity in x and y directions,
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To accommodate the computations on an arbitrary geom-
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TABLE I. Effect of far field boundary on wake length and separation angle.

Re=20 Re=40

D 50.5 62.5 75 50.5 62.5 75

�s 41.9518 41.4694 41.3277 51.8720 51.1700 51.0249

L 1.759841 1.760388 1.773829 4.130092 4.205498 4.210746

FIG. 1. Computational mesh.
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and J = � �x
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� , � , 
, and J depend on the geometry and hence calculated
only once in the entire iterative process and stored once for
all. Since the problem under investigation has cylindrical ge-
ometry, the geometric parameters in Eq. �6� can be computed
exactly. However, to verify the influence of these terms on
the accuracy of the final results, the terms in Eq. �6� have
been computed using exact functions and also using numeri-
cal approximations. The numerical approximation of Eq. �6�
is required due to the nonavailability of the exact computa-
tion of terms in Eq. �6� for the problems on irregular geom-
etries. It is found that the difference between these computa-
tions is marginal and hence all the computations for high
Reynolds numbers have been carried out using numerical
approximations of Eq. �6�. Finally, Eqs. �3� and �4� have to
be solved on the rectangular computational domain �� ,	�.

III. HIGHER-ORDER SEMICOMPACT SCHEME

A. Discretization

The complete details of the higher-order semicompact
space discretization of Eqs. �3� and �4� have been given in
�28� and their final form is given by
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� , �, and 
 are computed from the geometry transformation
and hence treated as constants. The third-order difference
terms in Eqs. �7�–�9� are the ones which make the present
scheme semicompact. All other terms in these equations are
approximated to fourth order on a compact molecule. Fur-
ther, the way the boundary conditions are applied at the ar-
tificial cut of the body fitted coordinate system and far field,
it is only at the neighborhood of the surface of the cylinder
that the present scheme requires one sided differences �only
for vorticity� for the third-order terms in Eqs. �7�–�9�.

TABLE II. Effect of grid size on wake length and separation angle.

Re=20 Re=40

Grid 75 100 150 75 100 150

�s 40.7119 41.3277 41.6750 50.7472 51.0249 51.5165

L 1.785711 1.773829 1.707539 4.301591 4.210746 4.041836

FIG. 2. �a� Stream lines and
�b� vorticity contours at Re=20
and 40.
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B. Initial and boundary conditions

The inviscid flow solution is taken as initial conditions
and boundary conditions are imposed on the surface of the
cylinder and also at far field which has been taken much
away from the surface of the cylinder. In addition, the
boundary conditions are also required at two symmetric lines
when the problem is solved at low Reynolds numbers �Re
�60� and on the artificial cut �the part of the domain on the
negative x axis� when the problem is solved at intermediate
and high Reynolds numbers. At low Reynolds numbers, the
symmetric nature of the flow about the x axis has been ex-
ploited, and the solutions are obtained only on the upper part
of the domain. In this case the symmetric boundary condi-
tions have been used at the two symmetric lines taken on
positive and negative sides of the x axis. However, for inter-
mediate and high Reynolds numbers no symmetry of the
flow has been used in the flow computations but periodic
conditions have been imposed on the artificial cut �since the
first and the last grid lines are one and the same in 	 direc-
tion� �refer to �32� for more details�. At far field, both � and
� are known from the uniform flow conditions. Finally, on
the surface of the cylinder, due to the no-slip condition, �
becomes zero and the vorticity � has been computed numeri-
cally using Briley’s formula. To compute this, the fourth-
order approximation of �� /�	 is obtained on the surface of
the cylinder using one-sided �forward difference in this case�
and central differences given by
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where the negative subscripts represent ghost points outside
the computational domain. From Eqs. �15� and �16� we have
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To compute the vorticity on the surface of the cylinder, we
use a fourth-order approximation of �=−J−2
��2� /�	2�
which is equivalent to

�i,0 = −



J2

16��i,−1 + �i,1� − ��i,−2 + �i,2�
12h2 . �19�

Substituting Eqs. �17� and �18� into Eq. �19� and imposing
the velocity component in the tangential direction as zero
gives

�i,0 = −



J2�108�i,1 − 27�i,2 + 4�i,3

18h2 � . �20�

All the computations in the present investigation have been
carried out using Eq. �20� as the boundary condition for vor-
ticity on the surface of the cylinder. However, �33� has inter-
preted Jensen’s formula, a formula similar to Eq. �20�, as
third-order accurate and also developed three different
fourth-order formulas to approximate no-slip boundary con-
ditions. After comparing the results of the lid driven cavity
problem solved using various formulas, they have concluded
that both Jensen’s and higher-order Jensen’s �HOJ� formulas
have fair convergence and good accuracy, with HOJ giving
slightly better approximations in most cases.

C. Numerical algorithm
1. Initialize �n and �n.
2. Compute �̄n using the Eq. �10�.
3. Compute �̄n+1 using the Eq. �8�.
4. Solve Eq. �7� for �n+1.
5. Solve Eq. �10� for �n+1.
6. Repeat steps 3 to 5 until convergence.

Equation �8� is an ordinary differential equation of �̄ with
respect to the time t. The obvious choice to solve this equa-
tion is to use the fourth-order Runge-Kutta �R-K� method so
that the time derivative also will be approximated to fourth
order, however, this requires additional storage. Since the
main interest in the present simulation is to show that the
HOSC scheme can be used to solve complex flow problems
in nonrectangular geometries, in the present investigation an
explicit scheme �time derivative is approximated with for-
ward difference approximation� has been incorporated for

TABLE III. Comparison of geometric parameters with previous studies.

Re Reference �37� Reference �38� Reference �39� Reference �40� Reference �34� Reference �35� Reference �36� Present

L 20 1.87 1.88 1.786 1.87 1.842 1.92 1.82 1.77

40 4.65 4.69 4.357 4.27 4.49 4.51 4.48 4.21

CD 20 2.0027 2.045 2.053 - 2.152 2.111 2.001 2.0597

40 1.5359 1.522 1.550 - 1.499 1.574 1.498 1.5308

�s 20 - 43.7 - - 42.96 42.79 42.9 41.3277

40 - 53.8 - - 52.84 52.84 51.5 51.0249
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temporal approximation of Eq. �8�. The computations are
also carried out using the R-K Scheme however, there is no
significant reduction in the CPU time is observed. Hence all
the investigations are carried out using the explicit scheme.
Similarly in steps 4 and 5, two elliptic equations have to be
solved iteratively for � and �. The equation in step 4 is an

usual Poisons equation and the equation in step 5 is a strong
diagonally dominant equation. Due to the diagonal dominant
nature of these equations and also because of small time
steps used in the computations, the successive over relax-
ation scheme, used for inner iterations, converged very
quickly ��5 iterations�. Instead of SOR scheme in comput-
ing � and � in steps 4 and 5, we have also used Bi-conjugate
gradient stabilized scheme. But this has increased the
memory requirement without any significant reduction in the
overall computational time. This may be due to the small
step length used in the time direction.

IV. RESULTS AND DISCUSSION

The higher-order semicompact scheme briefly described
in the earlier section has been used to simulate flow induced
by an impulsively started circular cylinder. Initially, simula-
tions at small Reynolds numbers were carried out to evaluate
the accuracy of the present method. The obtained results
have been compared qualitatively and quantitatively with
previous experimental and numerical results. Then simula-
tions at moderate and higher Reynolds numbers are used to
demonstrate the ability of the present scheme in simulating
the real flows.

A. Flows at Re=20 and 40

It is well known that the flows with Reynolds number less
than 60, will eventually develop into a steady state. There-
fore the results at these Reynolds numbers can be compared
with the results of the corresponding steady state problem.
The choice of Re=20 and 40 is due to the availability of
experimental and numerical results at these Reynolds num-
bers. Only the upper half of the domain has been considered
in the computations because it is again known that at these
small Reynolds numbers the flow is symmetric about the x
axis. Since the viscous effects are more close to the surface
of the cylinder, a nonuniform distribution of grid points is
used such that the grid density is much higher at the surface
of the cylinder and reduces gradually to the outer boundary.

FIG. 3. Comparison of �a� angle of separation �Ref. �11��, �b�
wake length �Ref. �11�� and �c� drag coefficient �Ref. �41��.

FIG. 4. Comparison of the vorticity on the cylinder ��-�36��
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The outer boundary in the form of a half circle is identified
depending on the Re and the far field boundary conditions
are applied. A typical computational mesh for flow at these
Reynolds numbers around a half circular cylinder is given in
Fig. 1. In this figure every alternate grid line has been given
for an 100100 size of the mesh.

The grid independence has been tested by varying the
mesh sizes into 7575,100100, and 150150. Also to
test the dependence of far field boundary in O type grids the
outer boundary is varied from 50 to 75 times the diameter of
the cylinder. A time increment of 0.0005 is used in these
computations.

Figure 2 gives the stream lines and vorticity lines when
flow reaches its final steady state at Re=20 and 40. In both
these cases stationary recirculating eddy develops behind the
cylinder. The wake length L, the distance between the rear
most point of the cylinder to the end of the wake, and the
angle of separation �s are compared to verify the grid inde-
pendence and dependence of far field boundary condition. In

Table I these two geometric parameters have been compared
by varying the far field boundary to 50.5, 62.5, and 75 times
the diameter of the cylinder for Re=20 and 40. The mesh
size has been fixed as 100100 in these computations. It is
clear from this comparison that a far field distance of 75
units gives reasonably accurate results. Similarly, in Table II
the effect of grid densities has been given at Re=20 and 40.
Here far field is fixed as 75 units.

Since the change of these geometrical parameters is very
minimal for grid densities more than 100, the HOSC scheme
can be taken as grid independent. The time is expressed as
a /U units where a is the radius of the cylinder. Finally in
Table III the wake length, angle of separation ��s� and Drag
coefficient CD are compared with various experimental and
numerical results �34–40�. It is clear from Table III that,
though some of the results of �34,35� deviate from the bench-
mark solution of �36� by more than 5%, the deviations of the
present values varies from 0.9% to 6% with most of the
variations centered at 2%. The good agreement of these geo-

FIG. 5. Stream lines at Re=300.

FIG. 6. �a� Stream lines and
�b� vorticity lines at Re=550.
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metric parameters with existing results confirms the perfor-
mance of the HOSC scheme.

The drag coefficient CD in Table III is computed from the
integration of the pressure and shear forces around the cyl-
inder using

CD = 
 py�d� −
2

Re

 �x�d� , �21�

where the surface pressure is defined by

p2 − p1 =
2

JRe
�

�1

�2

���� − 
�	�d� . �22�

In the actual computation of CD, the first term of Eq. �21�
is expanded using integration by parts and then �p /�� from
Eq. �22� is used to avoid the computation of pressure on the
cylinder. To compare the evolution of separation angle, wake
length, and drag coefficient with time at Reynolds numbers
20 and 40 the corresponding graphs are displayed in Fig. 3.
In these comparisons the experimental results of �11,41� are
also included. These comparisons clearly show that the re-
sults obtained by the present method agree well with the
benchmark data. The vorticity distribution over the cylinder
surface at the steady state, which has been computed numeri-
cally, is given in Fig. 4. The numerical results of �36� are
included in this figure for the sake of comparison. Again a
good agreement can be seen between the present and �36�
results.

B. Flows at Re=300 and 550

After testing the developed code at small Reynolds num-
bers, the same has been used to simulate the flows at mod-
erate Reynolds numbers. The flow around an impulsively
started circular cylinder at these moderate Reynolds numbers

is known to develop eventually into three-dimensional phe-
nomenon. However, at the early stage of the development of
the laminar wake region, the flow is still two dimensional
and symmetric about the x axis. So the present study at these
Reynolds numbers has been restricted to the early stage of
the flow development. In this range of Re we have chosen
the cases 300 and 550 because at these Re the experimental
and numerical results are available and also reported the for-
mation of a bulge and secondary eddy phenomena, respec-
tively.

The flow patterns for Re=300 and Re=550 at different
times have been given in Figs. 5 and 6, respectively. In this
experiment the far field is fixed at 25 units and the size of the
mesh is taken as 151151. The time increment is fixed as
0.0001 in the whole computation. Figure 5 clearly shows the
appearance of the bulge and increase of its size with time.
However there is no formation of any secondary eddy even
at the time t=10. As observed by �12� experimentally at t
=2.75 and numerically by �40� at t=2.85 the present scheme,
as shown in Fig. 6, also captures the formation of secondary
vortex at time t=2.75 for Re=550. Using the lattice Boltz-
mann method �34� also captured the formation of this sec-
ondary vortex at time t=2.75. As shown in this figure, the
size of the secondary vortex increases with time, however, it
does not grow to touch the surface of the wake region even at
time t=10. This is the feature again similar to what has been
shown by �12,40–42�. To validate the concentration of vor-
ticity in the vicinity of the cylinder, the equivorticity lines
have been also shown in Fig 6. These patterns are also in
close agreement with the existing literature. All the compu-
tations at these Re have been done with and without using
symmetry of the flow to verify the accuracy of the computa-
tions.

C. Flows at Re=1000 and 5000

The choice of Re=1000 is to demonstrate the capability
of the present scheme in capturing the � phenomenon. It is

FIG. 7. Stream lines at Re=1000.

FIG. 8. Vorticity on the cylinder at Re=1000.
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known from the experimental results of �11� that for the
flows at Reynolds numbers between 800 and 5000 there is a
formation of � phenomenon. At times t around 1.5 when the
main eddy is still stable, the secondary eddy develops
enough in size for its exterior boundary to touch the bound-
ary of the main recirculating zone thus splitting the main
eddy into two parts and isolating the region of the wake next

to the separation point in which another secondary eddy is
formed. These two secondary eddies thus formed are equiva-
lent in size and in strength and constitute “a pair of second-
ary eddies.” This particular formation of the streamline struc-
ture is named as � phenomenon by �12�. They have also
observed the formation of � phenomenon at Reynolds num-
ber 5000 and above. At these Reynolds numbers, at the very

FIG. 9. �a� Formation of �
phenomenon at Re=5000 and �b�
formation of � phenomenon at
Re=5000.
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early phase of the flow establishment, a very thin recirculat-
ing wake �fitting exactly the cylinder shape� is formed. How-
ever, very soon at t=0.75 next to the cylinder wall, the core
of this recirculating zone �which seems to correspond to a
vorticity peak� rotates in one piece, very quickly in compari-
son with the velocities in the other part of the separated zone,
and is individualized in a “vortex” that is increasing with
time in size and strength. Then at time t=1, particular vortex
separates the initial wake into two parts. The one situated
near the separated point S is occupied by a pair of secondary
eddies whose structure is roughly similar to those described
before but which however differ in details. The second part
remains more or less in communication with the rapid rotat-
ing vortex. For t=1.25 it is seen that the vortex progressively
replaces the initial wake “absorbing” the zones on either
side, including the one occupied by the pair of secondary
eddies. At t=1.5, the initial wake, which �11� has called as
the “forewake,” has practically vanished and the “mainwake”
is formed. Since this phenomenon can be observed for Re
greater than or equal to 5000, we have chosen Re=5000, so
that we can demonstrate the formation of both � and � phe-
nomena one after the other.

For Re=1000, the far field is fixed at 12 times the diam-
eter of the cylinder and a 201201 grid has been used. The
streamline contours are shown in Fig. 7. In this figure the
flow patterns at time t=2.5, 3.5, 4.5, and 5.5 are given to
show the appearance of secondary eddy and splitting of the
main eddy into two parts, isolating the region of the wake
next to the separation point, wherein a second secondary
eddy is formed. These flow structures again compare well

with the experimental illustrations of �11�. The vorticity dis-
tribution over the cylinder surface for Re=1000 at various
times is given in Fig. 8.

Figures 9�a� and 9�b� give the time evolution streamline
patterns at Re=5000. These computations have been per-
formed on a 351351 grid with outer boundary fixed at ten
times the diameter of the cylinder. The time increment is
again fixed as 0.0001. Figure 9�a� clearly shows the forma-
tion of � phenomenon at t=1.5 however, the isolated part of
the vortex again coalesce with other parts of the wake region,
as shown in Fig. 9�b�, and forms the � phenomenon at time
t=2.5. This phenomenon simulated using the HOSC scheme
has been compared with the only available experimental re-
sults of �12� in Fig. 10. The vorticity on the surface of the
cylinder for Re=5000 at various times is given in Fig. 11.

FIG. 10. Comparison of flow patterns for Re=5000 at time t
=2.5 �a� present results, �b� �Ref. �12��.

FIG. 11. Vorticity on the cylinder at Re=5000.
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V. CONCLUSIONS

The classical problem of unsteady viscous incompressible
flow past an impulsively started circular cylinder has been
solved using higher-order semicompact scheme. The sepa-
rated flows behind the circular cylinder have been simulated
until steady state for low Reynolds numbers and during the
early stages of the flow for moderate and high Reynolds
numbers. The results obtained have been compared and
found in good agreement with existing experimental and
computational results. The geometric parameters like flow

separation and length of the wake have been also compared
with previous results and found satisfactory. The main ad-
vantage of the HOSC scheme is its applicability to arbitrary
irregular domains with a nonuniform compact stencil. To
avoid too much algebraic manipulation which is necessary
for conventional compact schemes, in this scheme the com-
pactness has been relaxed for a few terms in the higher-order
approximation. Exploiting these advantages of the HOSC
scheme we have captured the appearance of � phenomenon
at Re=1000 and both � and � phenomena one after the other
at times 1.5 and 2.5, respectively for Re=5000.
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